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Preface 
This document is partially to show what I’ve learned, but it’s mostly to pass on that 

knowledge to the UAV/RC community. The majority of this is talking about the project steps 
and methodologies, but the “Tips & Lessons Learned” section has most of the condensed 
information that I think would be useful to someone building their own VTOL aircraft, 
especially with the Pixhawk. 

This project was an extension of the solar VTOL aircraft project I worked on for one of 
my two senior design projects at Miami University. For that project, we built and modified a 
Gemini V2 aircraft with solar charge capability, vertical-takeoff-or-landing, glowstick drop, and 
semi-autonomous flight. Due to understaffing, we barely got the aircraft to the beginning of the 
flight test program. It hovered and flew in forward flight, but many questions were left 
unanswered. 
 

 
This is the original aircraft, built from a Bearospace Gemini V2 aircraft for a senior design 

project. I built the Igloo 23 demonstrator because I only had a 5S battery and wanted to 
experiment with pixhawk VTOL on a cheap platform. 

 
Moving forward, I wanted to take a closer look and see what I could find out. I decided 

on a multi-phase approach. Phase I was to do some basic trade studies and research the potential 
performance of such a system. Phase II was the creation of the Igloo 23 VTOL demonstrator. 
This “phase II” is the subject of this document. With this, I wanted to gain experience running a 
VTOL flight-test program using the pixhawk on a low-risk platform and also test new designs 
for vertical-takeoff-motor pivoting. 
 
Project Summary 



First it should be understood that this aircraft was intentionally suboptimal. Nothing 
about it was high performance or high quality. Also, while I have used it a few times in the past, 
this was by far my most intimate experience with the Pixhawk 4 (Px4) flight controller. In the 
course of the project, I crashed the airplane ~4 times. Most of these crashes were caused by 
improper tuning or configuration of the pixhawk parameters. I have outlined these mistakes 
in the “Tips & Lessons Learned” section at the end. On this aircraft, I flew the same VTOL 
motors from the original aircraft. Because it’s a much lighter aircraft (~8 lbs vs ~18 lbs), I used 
5S batteries instead of 6S. I did not change the propellers to account for the voltage change. I 
made fiberglass parts, integrated them with 3d-printed motor mounts, made and tuned a custom 
pixhawk airframe controls profile, and put together some custom instrumentation. Eventually the 
aircraft flew pretty well, completing full VTOL transitions and limited autonomous flight. The 
project ended when a bad RC connection, combined with bad return mode settings, caused the 
aircraft to loiter over one spot until the battery died. By this point, I had achieved most of my 
goals with the project, and the cheap Flite-Test-foamboard airframe had deteriorated to the point 
that was barely capable of flying. 
 
Project Phases 

Before starting construction, I needed to validate the aircraft’s size and setup. It was 
based on the “Igloo 23” foamboard airframe, which I had flown before in a lighter configuration. 
After a quick bench test with the additional weight of the motors required for vertical takeoff, I 
decided the wing needed some reinforcement because there were early signs of 
buckling/compression damage on the top of the wing. Suspending the aircraft by its wingtips 
(simulating the loads of a high-g load case), the wing structure seemed close to its limit. I did not 
examine the negative-G load case because I figured this aircraft would spend virtually all the 
time in positive-g flight. My initial estimation of the aircraft’s mass suggested it would have a 
reasonable wing loading. 

 
After validating the configuration, I started prototyping the VTOL arms. The arms on the 

original aircraft were made of plywood and balsa, and had a very crude system for mounting the 



motors. During the hover testing of that much larger aircraft, the motor mounts broke. I wanted 
to see if I could come up with a more elegant solution. There were a few major challenges. For 
reasons I won’t discuss here, I went with a fiberglass structure and 3d-printed motor mountings. I 
would have preferred aluminum mountings, but I didn’t have the necessary tools. My initial 
attempts at making fiberglass were unsuccessful because of incompatibility between 
polyurethane foam and polyester resin. After switching to epoxy resin and refining my process, I 
put together two working structural arms. 

These parts were set up with 2 layers of 10 oz fiberglass tape on both the top and bottom 
of the foam core. Then I placed the part on its side and applied 6 oz plain cloth on the sides. This 
cloth reached up and covered the “top” and “bottom” surfaces as well. To maintain shape during 
the curing process, it turns out, you can use kitchen plastic wrap (cellophane). This precludes you 
from wiping off much of the excess resin, but the resultant form of the fiberglass layering is 
improved. After applying glass to both sides (to act as a “shear web”), the net result was 4 layers 
of glass on top/bottom and 1 layer on each side. If this were an I-beam, these would be the shear 
flange and shear web, respectively. 
 

 
 

In testing, one of these arms supported 35 lbf from each motor mount (this was actually a 
failed attempt at a distructive test). Under 6S power, my motors are capable of ~10 lbf of thrust 
each, so this test displayed very conservative performance. It’s not clear how close to failure this 
part was, but the data will be useful for future designs. Under load, my estimations show that it 
was supporting ~3000 psi of normal mechanical stress. According to the internet, a typical 
fiberglass layup could support 9000+ psi. The expected failure mode here is either buckling 
under compression (due to the normal stress resulting from bending) or a compressive failure at 
the point supporting the beam under loading (in this case, the 70 lbs at the center). In actuality, 
the failure mode would probably be a combination of the two. As for the risk of buckling, I have 



read that store-bought polystyrene foam is hardly stiff enough to add much structural benefit as a 
composite core material. 

 
Around this time, I also worked on the mechanism for tilting the forward motors. In some 

ways this was difficult, but mostly due to my lack of access to useful tooling. Instead of having 
proper aluminum components, I had to use a 3d-printed structure. Instead of a proper shaft, I 
used a #4 (I believe) screw. I used GT2 pulleys from robotshop.com. The whole thing was crude 
but effective. The final result looked something like this: 

 

 
The printed mounting connected to a printed test jig 

Sometimes the belt would slip, but it was mostly during crashes or hard landings. 
 
 
 



 
The original mechanism on the original aircraft. The servo was connected to the pivot 

axis with a single piano wire connection. This geometry works, but has a fair amount of slop and 
an inherent nonlinearity. 

 

 
 

On the whole, the belt drive works better than the piano-wire connection I used on the 
original aircraft. There is decreased slop, and the system does not suffer from the same geometric 
nonlinearities. In retrospect, I doubt there is any advantage to using a belt-drive vs a direct drive 
system. I would have to figure out how to do that, but there’s probably room for improvement 
here. As a side note, I am intrigued by the use of the aft motor as a counterbalance against the 
pivoting front motor. This adds weight in some ways, but it would allow a much smaller pivot 
actuator. I suspect this is used on the stunning WingCopter VTOL drone. 

Printed components introduce lots of structural uncertainty, but I was able to mitigate 
some of this via load testing and good old-fashioned conservative design. Load-testing in the 
forward direction was relatively trivial, but testing in the hover position required putting together 
a complete motor arm and then loading both ends. 

 



 
Load testing the forward motor pivot mount. A couple weights are suspended in the bags, 

simulating the thrust of the motor in the forward direction. 
 

These fiberglass arms were originally designed for the dimensions of the Gemini v2 
aircraft, which has a smaller wing chord than the igloo 23. This meant that on the igloo aircraft, a 
greater portion of the aft props would be suspended over the wing. This also meant that 
maintaining a physical separation between the wing and aft props was a challenge. The ailerons’ 
presence makes it worse. To clear the ailerons, I also used a 3d-printed spacer between the 
wing’s bottom surface and the top of the fiberglass arm. To keep the propellers clear of the wing, 
I redesigned the aft motor mounts to be taller. Then I mounted them at a slight back-lean angle 
so the forward prop tip clears the top of wing. This all increased drag, but that was of little 
consequence on this low-performance demonstrator. 

 
 

In early testing, I started out using only the rubber bands to connect the wing and 
fuselage. However, there was too much motion and flexibility between the arms and the main 



wing. This seemed to cause structural instability and increased the odds of the propellers striking 
another part of the airframe. To mitigate this, I used hot-glue to connect the 3d-printed wing-arm 
spacers to the wing. Then I screwed the arms to the spacers. This constrained movement of the 
arms. The rubber bands helped hold everything together and decrease the load on the hot glue. 

 

 
 

It certainly was not a robust setup, but it was good enough for this suboptimal 
demonstrator. The one advantage was it did a great job of absorbing impacts. It’s a good idea to 
decide what part will break first because if you don’t, then the physics of the impact will. Then it 
could be hard to repair. When this aircraft crashed, it would sometimes impact nose-first. The 
3d-printed motor mounts would sometimes break, and so would the wing-arm connection. Some 
new hot glue, rubber bands, and 3d-printing were usually all that were required to fix it. 

Once the aircraft was mostly hardware-ready, it became a problem of addressing the 
software component. The original aircraft’s (gemini v2) software would be sufficient, but I had 
to get a copy of it from my old group-mate from college. That took well over a week, so I spent 
some time seeing if I could make my own version of it. Here’s what I learned: 

Firstly, the explanation on the px4 documentation of how to actually build the px4 flight 
stack is not well written. It’s broken into multiple places, and some of the pages are helpful while 
others aren’t. Here’s what you need to know: 

To create a custom airframe. We had some difficulty with this, so I’ll spend some time on 
this. Airframes are defined by configuration and mixer files. This is talked about on this page: 
https://dev.px4.io/v1.9.0/en/airframes/adding_a_new_frame.html I’ll try to add some additional 
commentary to clarify the process for someone who’s never seen this before. Firstly, the mixer 
files and configuration files are essentially just .txt files, but the mixer files use the .mix ending 
and configuration files do not have a file type designation. The Config file allows you to set the 
fundamental parameters for the aircraft, while the mixer file tells the flight computer how to 
actuate the outputs (controls) to make it do what you want. If you’re making a custom (especially 
VTOL) airframe, I would strongly recommend that you check out my parameter lessons learned 

https://dev.px4.io/v1.9.0/en/airframes/adding_a_new_frame.html


in the tips & lessons learned section. Mixer files are considerably more complicated. As 
explained in the mixer documentation page on the internet, the mixer file contains several blocks 
of numbers. Each block represents 1 or more PWM channel outputs. The numbers inside this 
block characterize the source and makeup of the output signal(s). Here I have provided an 
example from the online documentation of controls block, but I have added some additional 
explanation. 

M: 2 

O:      10000  10000      0 -10000  10000 

S: 0 0  -6000  -6000      0 -10000  10000 

S: 0 1   6500   6500      0 -10000  10000 

Where each number from left to right means: 

● M: Indicates two scalers for two control inputs. It indicates the number of control inputs the mixer 
will receive. For example, this is useful in the creation of an “elevon” control where two inputs, the 
aileron and elevator, contribute to one output (the elevon). 

● O: Indicates the output scaling (*1 in negative, *1 in positive), offset (zero here), and output range 
(-1..+1 here). 

If you want to invert your PWM signal, the signs of the output scalings have to be changed: 
O:      -10000  -10000      0 -10000  10000 

This line can (and should) be omitted completely if it specifies the default scaling: 
O:      10000  10000   0 -10000  10000 

○  
● S: Indicates the first input scalar for this channel: It takes input from control group #0 (This is 

Flight Control--See below) and input 0 (roll). It scales the roll control input * 0.6 and reverts the 
sign (-0.6 becomes -6000 in scaled units). It applies no position offset (0) and outputs to the full 
range (-1..+1) 

● S: Indicates the second input scalar: It takes input from control group #0 (Flight Control) and the 
second input (pitch). It scales the pitch control input * 0.65. It applies no offset (0) and outputs to 
the full range (-1..+1) 

More info on Control Groups can be found at the following link: 
https://dev.px4.io/v1.9.0/en/concept/mixing.html   This is an important part of setting up these 
control blocks correctly. The distinction between control groups 0 and 1 is a little vague to me, 
but the listing is as follows: 

Control Group #0 (Flight Control) 
● 0: roll (-1..1) 
● 1: pitch (-1..1) 
● 2: yaw (-1..1) 
● 3: throttle (0..1 normal range, -1..1 for variable pitch / thrust reversers) 
● 4: flaps (-1..1) 

https://dev.px4.io/v1.9.0/en/concept/mixing.html


● 5: spoilers (-1..1) 
● 6: airbrakes (-1..1) 
● 7: landing gear (-1..1) 

Control Group #1 (Flight Control VTOL/Alternate) 
● 0: roll ALT (-1..1) 
● 1: pitch ALT (-1..1) 
● 2: yaw ALT (-1..1) 
● 3: throttle ALT (0..1 normal range, -1..1 for variable pitch / thrust reversers) 
● 4: reserved / aux0 
● 5: reserved / aux1 
● 6: reserved / aux2 
● 7: reserved / aux3 

Control Group #2 (Gimbal) 
● 0: gimbal roll 
● 1: gimbal pitch 
● 2: gimbal yaw 
● 3: gimbal shutter 
● 4: reserved 
● 5: reserved 
● 6: reserved 
● 7: reserved (parachute, -1..1) 

Control Group #3 (Manual Passthrough) 
● 0: RC roll 
● 1: RC pitch 
● 2: RC yaw 
● 3: RC throttle 
● 4: RC mode switch 
● 5: RC aux1 
● 6: RC aux2 
● 7: RC aux3 

Control Group #6 (First Payload) 
● 0: function 0 (default: parachute) 
● 1: function 1 
● 2: function 2 
● 3: function 3 
● 4: function 4 
● 5: function 5 
● 6: function 6 
● 7: function 7 

 

 



The example mixer file for the aircraft(s) we built is provided below: 

 

Note that we assigned two inputs to the aerodynamic flight controls so that they would function 
in both fixed-wing and mulicopter mode. Also this mixer file actually specifies the inputs for 8 
output channels, not 4. Just below the title, there is a section called “motors,” that has the 
following information: 

4x 10000  10000  10000  0 

This enables use of the quad-copter controller when the aircraft is in multicopter mode, and 
automatically assigns the first 4 channels to the motors. You can also specify a 3y configuration. 
In fact, that is what the mixer file used for the eflite convergence (which is the platform we used 
as a starting place for our airframe). I’m not sure what other options are available, but I am sure 
it’s in the px4 documentation somewhere. Otherwise, you can look at the other (existing) aircraft 
mixer files on the px4 Github. Assuming you set the parameters correctly, much of the VTOL 
transitioning is handled by the px4 software in the background. 



After taking care of putting together your custom configuration and mixer files, you must drop 
them into a copy of the flight stack. To do this, you can clone the px4 github repository. The 
“Building the Code” documentation for px4 has a pretty good explanation on how to do that. 
Then you have to figure out how to actually build the code. It seems there’s a ton of ways to do 
this, and they’re mostly not well-explained…. Especially the methods that happen in Windows. 
I’ll attempt to explain how I did this: 

I spent a lot of time messing around with installing linux bash and attempting to do it that 
way, but finally I had luck with the Cygwin Toolchain. This is actually intended for Windows, 
and seems to work pretty well. So download and install the Cygwin Toolchain. You can find it 
at: https://dev.px4.io/v1.9.0/en/setup/dev_env_windows_cygwin.html  Then (if you haven’t 
already) install github and clone the px4 repository. Then clone it to your local machine. 

After going through the steps to install the toolchain, go to the toolchain’s directory. It 
defaults to C:\PX4\ Then run the file run-console.bat to start the bash console file. If you 
haven’t cloned the repository yet, you can do that now. The necessary commands to do that are 
on the website I linked above. Next you want to navigate to the appropriate firmware directory 
and then build the flight stack. To build the stack, you need to enter the appropriate command for 
you hardware. This ensures that the toolchain builds a version of the flight stack compatible with 
your hardware. The commands for various boards are listed at this site: 
https://dev.px4.io/v1.9.0/en/setup/building_px4.html For example, I was building software for a 
Pixhawk 4, so I used the command: make px4_fmu-v5_default 

I didn’t go into much detail on the software build process, frankly, because it’s been a 
few months and I don’t remember very well. The website does an okay (but not great) job of 
explaining the process. I hope this is all helpful! Don’t miss my overall tips & lessons learned: 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

https://dev.px4.io/v1.9.0/en/setup/dev_env_windows_cygwin.html
https://dev.px4.io/v1.9.0/en/setup/building_px4.html


Tips & Lessons Learned - More information on Parameters can be found at the Px4 site for 
parameter reference: https://docs.px4.io/v1.9.0/en/advanced_config/parameter_reference.html 
 

1. Polyester resin and polyurethane foam are not compatible. 
2. The original control gains were very high, at least for my purposes. I’m not sure if they 

were the px4 default values or if they were the values from the convergence profile we 
originally modified for this aircraft. 

3. High control gains lead can lead to oscillations, but very high gains can lead to divergent 
oscillations. This led to several crashes. I never got my hover parameters perfect, but they 
weren’t bad. They were as follows: 

a. MC_PITCH_P = 4 
b. MC_PITCHRATE_P = .12 
c. MC_PITCHRATE_I = .05 
d. MC_ROLL_P = 3.5 
e. MC_ROLLRATE_P = .12 
f. MC_ROLLRATE_I = .05 
g. MC_YAW_P = 2.2 

4. Another thing to watch out for is the max rollrate settings. These seem to be linked to the 
control inputs. Decreasing them decreases your control sensitivity. With the stock values 
(220 deg/s), the controller would command huge amounts of control. I think it made it 
hard for both the flight controller and myself to properly control the aircraft. I changed 
the values like so: 

a. MC_PITCHRATE_MAX = 100 (deg/s) 
b. MC_ROLLRATE_MAX = 100 (deg/s) 
c. MC_YAWRATE_MAX = 70 (deg/s) 

5. VTOL-specific parameters: 
a. Unless your aircraft is aerodynamically neutral (it probably isn’t because it’s 

VTOL), I would enable the weathervane parameter (Set WV_EN = 1). This will 
keep the aircraft from fighting hard against its natural tendency to point into the 
wind. This over-controlling can lead to instability and loss-of-control.  

b. VT_MOT_COUNT = 4 This depends on the configuration of your aircraft, but if 
you don’t set it right, your aircraft will not function properly as a VTOL aircraft. 

c. VT_TYPE = 1 This determines the type of VTOL aircraft. 1 means it’s a tiltrotor 
aircraft. 

d. VT_FW_MOT_OFFID = 24 This parameter is weird. These are the channel 
output numbers of the motors that shut off during fixed wing flight, if applicable. 
This uses the convention where the outputs are labled from 1-8, instead of 0-7. So 
on this aircraft, outputs 2 and 4 go to the two aft motors. As another example, on a 

https://docs.px4.io/v1.9.0/en/advanced_config/parameter_reference.html


generic separate-lift-thrust quadplane VTOL aircraft, this parameter would be set 
to 1234 

e. VT_F_TR_OL_TM = 5 This is the open-loop transition time. That is, if you 
have the airspeed sensor disabled (see lesson-learned #6), this is how long the 
aircraft stays in transition mode before going into full fixed-wing mode. In some 
ways, higher numbers are better. The default value is 6 seconds, and that’s pretty 
good. 

f. If you are using an airspeed sensor (and it’s well-calibrated), check 
VT_ARSP_TRANS. I didn’t use this parameter, so I won’t give any advice on it. 

6. Pitot tube (airspeed sensor) is not necessary if you set the following parameters: 
a. FW_ARSP_MODE to 1 Unless you set this to 1, a VTOL aircraft without an 

airspeed sensor will not complete a transition. It’ll just cruise around happily in 
mid-transition…. Or it’ll fall out of the sky. Depending on how it’s set up. 

b. CBRK_AIRSPD_CHK to 162128. Not entirely sure if this is necessary, but I 
used it. 

7. Position hold control gains: 
a. I set MPC_XY_P = .3 This value could probably be higher, but I didn’t have much 

time to tune it well. I set it like this before I had the controller really dialed because 
the aggressive maneuvers that came with higher values were causing control issues. 

b. MPC_Z_P = .3 I’m not sure on this value either. I didn’t spend much time dialing it 
in. 

8. You CAN build the px4 flight stack in windows with the Cygwin toolchain and command 
prompt. I think that’s how I did it, but I need to confirm. 

9. Return Mode. Be intentional about setting your return and failsafe (such as 
return-to-launch) modes. It’s also not a bad idea to test the Return mode. I found this out 
the hard way, and it cost me my only battery. Set the aircraft to hover for a finite amount 
of time before landing. 

a. Set RTL_LAND_DELAY = some positive, finite value. 15 or 30 sec would do. 
If you set it to -1, the aircraft will return and hover at RTL_RETURN_ALT until 
it regains signal or destroys your battery in an unsafe fashion. I wouldn’t 
recommend that. 

b. RTL_RETURN_ALT = 50 to 100 (m) This is at your discretion… depending on 
whether you have a bunch of trees and other tall things to fly over. 

c. RTL_DESCEND_ALT = 20 (m) To clarify, this is the altitude the aircraft loiters 
at for RTL_LAND_DELAY amount of time after returning to the home/launch 
position. 

10. When the pixhawk lands an aircraft in horizontal flight mode, it loiters over some 
position and then starts to descend towards a predetermined point. You can adjust the 
final approach in multiple ways. There’s the loiter altitude, loiter radius, glide slope 

https://docs.px4.io/v1.9.0/en/advanced_config/parameter_reference.html#VT_ARSP_TRANS


angle, distance, and maybe others. It is worth noting that variation in true altitude can 
cause variations in where exactly the aircraft touches down. There might be a way of 
adjusting this, but I’m not sure exactly what that is. 

11. Doing a range check is a pretty good idea. I knew this, but for once I “payed” for not 
doing it. It turns out that my Spektrum Satellite receiver doesn’t work properly. 

12. Be aware of receiving fasteners in composite materials…. Unless it’s the fiberglass is 
very thick. Then it would be a good idea to tap the hole properly. 

13. Make sure you have a lot of tension in the pivot belt… this is liable to be the slip point in 
such a mechanism. I got my system to the point where it typically wouldn’t slip in flight, 
but it would slip in a crash or hard landing. 

14. Plastic wrap is useful for holding shape on a wet layup. If you let the epoxy resin cure 
completely, the plastic wrap will release easily from the cured part. 

15. There is an unusual failure mode with the pixhawk where you can use a custom airframe 
profile but then “update” your firmware. If you do this via the typical method of updating 
your firmware with the latest public copy of px4 (that qgroundcontrol downloads), then 
the vehicle will no longer have your custom airframe data on hand (the data that comes 
from the configuration and mixer files). That is, the controller will reference the 
SYS_AUTOSTART parameter and look for an airframe that is not there anymore. I had 
this happen because I did not realize that the custom airframe configuration was 
embedded in the firmware. It was not obvious what was going on, but Qgroundcontrol no 
longer recognized my transmitter inputs. It gave the following error when attempting to 
calibrate the radio: “Detected 0 radio channels. To operate px4, you need at least 5 
channels.” There’s quite a few things that can cause this error, but I think this was a rare 
edge case cause that wasn’t well documented. If you want to switch to a stock airframe 
profile, that will fix this issue. You can do this in the qgroundcontrol airframe menu or 
via changing the SYS_AUTOSTART parameter. However, if you stick with your 
custom airframe profile, you will have to install a (old or new) firmware copy that has 
that custom airframe imbedded in it. 

16. For an unknown reason, sometimes the pixhawk’s reading of level horizon would 
wander. Once or twice I took off and it took a large amount of pitch input to maintain 
level flight. I would just recommend that you make sure that it is correct before takeoff. 

17. It turns out that the external power distribution board that comes with the HolyBro 
Pixhawk 4 has places for you to connect your motors. Using this, it can measure the 
amount of current, and therefore power, consumed. I did not realize this initially and 
bypassed it with a separate wiring harness. This stinks from a data-collection perspective, 
but I wasn’t sure whether the board could support enough current for this aircraft 
anyway. I would love to find more data on this board. 

18. This is a bit obvious, but make sure you have a battery that can really support the current 
draw you need. VTOL airplanes use a lot of power, and my cheap battery could barely 



handle it. The voltage would drop terribly under operation, and I only drew ~1600 mah 
from a 5000 mah battery and achieved a ~3 minute hover flight times as a result. 

19. If you’re building a VTOL aircraft from scratch or bashing one together, be aware of the 
torque-through-the-wing problem. On a plane like mine (or most quad-vtols), you get 
substantial torque between the two sets of motors when the aircraft tries to yaw. On this 
aircraft, that was supported by the wing’s structure. Combined with a few crashes, this 
structural integrity slowly deteriorated because this wing wasn’t built to withstand these 
loads. 

20. Until the aircraft’s hover control is very well-dialed in, beware of going from any manual 
mode to position mode. This is also true of going from acro mode to stabilized mode. 
Sometimes this can lead to very sudden control inputs as the controller switches modes 
and tries to regain control. If your controller is not fairly well tuned, this can destabilize 
it. 


